Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Three equilateral triangles ABC, AYX and XZB are drawn with the point X a moveable point on AB. The points P, Q and R are the centres of the three triangles. What can you say about triangle PQR?

Can you make sense of these three proofs of Pythagoras' Theorem?

Prove Pythagoras' Theorem using enlargements and scale factors.

Do you have enough information to work out the area of the shaded quadrilateral?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Four jewellers share their stock. Can you work out the relative values of their gems?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Can you make sense of the three methods to work out the area of the kite in the square?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Find the missing angle between the two secants to the circle when the two angles at the centre subtended by the arcs created by the intersections of the secants and the circle are 50 and 120 degrees.

An equilateral triangle is constructed on BC. A line QD is drawn, where Q is the midpoint of AC. Prove that AB // QD.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Can you find the areas of the trapezia in this sequence?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Investigate the number of points with integer coordinates on circles with centres at the origin for which the square of the radius is a power of 5.

Keep constructing triangles in the incircle of the previous triangle. What happens?

The diagonal of a square intersects the line joining one of the unused corners to the midpoint of the opposite side. What do you notice about the line segments produced?

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

A point moves around inside a rectangle. What are the least and the greatest values of the sum of the squares of the distances from the vertices?

What fractions can you divide the diagonal of a square into by simple folding?

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

Four identical right angled triangles are drawn on the sides of a square. Two face out, two face in. Why do the four vertices marked with dots lie on one line?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Can you rearrange the cards to make a series of correct mathematical statements?

A introduction to how patterns can be deceiving, and what is and is not a proof.

We continue the discussion given in Euclid's Algorithm I, and here we shall discover when an equation of the form ax+by=c has no solutions, and when it has infinitely many solutions.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Fractional calculus is a generalisation of ordinary calculus where you can differentiate n times when n is not a whole number.

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

Given a set of points (x,y) with distinct x values, find a polynomial that goes through all of them, then prove some results about the existence and uniqueness of these polynomials.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Here is a proof of Euler's formula in the plane and on a sphere together with projects to explore cases of the formula for a polygon with holes, for the torus and other solids with holes and the. . . .

In this article we show that every whole number can be written as a continued fraction of the form k/(1+k/(1+k/...)).

Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.