Peter Zimmerman from Mill Hill County High School in Barnet, London gives a neat proof that: 5^(2n+1) + 11^(2n+1) + 17^(2n+1) is divisible by 33 for every non negative integer n.

What can you say about the common difference of an AP where every term is prime?

Find all real solutions of the equation (x^2-7x+11)^(x^2-11x+30) = 1.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Which is the biggest and which the smallest of $2000^{2002}, 2001^{2001} \text{and } 2002^{2000}$?

Peter Zimmerman, a Year 13 student at Mill Hill County High School in Barnet, London wrote this account of modulus arithmetic.

An account of methods for finding whether or not a number can be written as the sum of two or more squares or as the sum of two or more cubes.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

We only need 7 numbers for modulus (or clock) arithmetic mod 7 including working with fractions. Explore how to divide numbers and write fractions in modulus arithemtic.

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Can you work through these direct proofs, using our interactive proof sorters?

When if ever do you get the right answer if you add two fractions by adding the numerators and adding the denominators?

Sort these mathematical propositions into a series of 8 correct statements.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Take a complicated fraction with the product of five quartics top and bottom and reduce this to a whole number. This is a numerical example involving some clever algebra.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

When is it impossible to make number sandwiches?

The sum of any two of the numbers 2, 34 and 47 is a perfect square. Choose three square numbers and find sets of three integers with this property. Generalise to four integers.

A polite number can be written as the sum of two or more consecutive positive integers. Find the consecutive sums giving the polite numbers 544 and 424. What characterizes impolite numbers?

Show that x = 1 is a solution of the equation x^(3/2) - 8x^(-3/2) = 7 and find all other solutions.

Given that a, b and c are natural numbers show that if sqrt a+sqrt b is rational then it is a natural number. Extend this to 3 variables.

By proving these particular identities, prove the existence of general cases.

Can you work out where the blue-and-red brick roads end?

What fractions can you divide the diagonal of a square into by simple folding?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Prove that you cannot form a Magic W with a total of 12 or less or with a with a total of 18 or more.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Find all positive integers a and b for which the two equations: x^2-ax+b = 0 and x^2-bx+a = 0 both have positive integer solutions.

To find the integral of a polynomial, evaluate it at some special points and add multiples of these values.

Can the pdfs and cdfs of an exponential distribution intersect?

Professor Korner has generously supported school mathematics for more than 30 years and has been a good friend to NRICH since it started.

Solve this famous unsolved problem and win a prize. Take a positive integer N. If even, divide by 2; if odd, multiply by 3 and add 1. Iterate. Prove that the sequence always goes to 4,2,1,4,2,1...

Kyle and his teacher disagree about his test score - who is right?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

This follows up the 'magic Squares for Special Occasions' article which tells you you to create a 4by4 magicsquare with a special date on the top line using no negative numbers and no repeats.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Show that the infinite set of finite (or terminating) binary sequences can be written as an ordered list whereas the infinite set of all infinite binary sequences cannot.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.