How many pairs of numbers can you find that add up to a multiple of 11? Do you notice anything interesting about your results?

Imagine we have four bags containing a large number of 1s, 4s, 7s and 10s. What numbers can we make?

The Tower of Hanoi is an ancient mathematical challenge. Working on the building blocks may help you to explain the patterns you notice.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

Imagine we have four bags containing numbers from a sequence. What numbers can we make now?

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

I added together some of my neighbours house numbers. Can you explain the patterns I noticed?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

Four jewellers share their stock. Can you work out the relative values of their gems?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

If you think that mathematical proof is really clearcut and universal then you should read this article.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Can you find the areas of the trapezia in this sequence?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Can you rearrange the cards to make a series of correct mathematical statements?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

When is it impossible to make number sandwiches?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What fractions can you divide the diagonal of a square into by simple folding?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Kyle and his teacher disagree about his test score - who is right?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.