Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

The sums of the squares of three related numbers is also a perfect square - can you explain why?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

Four jewellers share their stock. Can you work out the relative values of their gems?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

If you think that mathematical proof is really clearcut and universal then you should read this article.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

What is the area of the quadrilateral APOQ? Working on the building blocks will give you some insights that may help you to work it out.

Can you make sense of these three proofs of Pythagoras' Theorem?

What fractions can you divide the diagonal of a square into by simple folding?

Can you visualise whether these nets fold up into 3D shapes? Watch the videos each time to see if you were correct.

Can you rearrange the cards to make a series of correct mathematical statements?

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

When is it impossible to make number sandwiches?

A introduction to how patterns can be deceiving, and what is and is not a proof.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?