If you think that mathematical proof is really clearcut and universal then you should read this article.

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

Learn about the link between logical arguments and electronic circuits. Investigate the logical connectives by making and testing your own circuits and fill in the blanks in truth tables to record. . . .

I am exactly n times my daughter's age. In m years I shall be exactly (n-1) times her age. In m2 years I shall be exactly (n-2) times her age. After that I shall never again be an exact multiple of. . . .

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

An article which gives an account of some properties of magic squares.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Clearly if a, b and c are the lengths of the sides of a triangle and the triangle is equilateral then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true, and if so can you prove it? That is if. . . .

Euler found four whole numbers such that the sum of any two of the numbers is a perfect square. Three of the numbers that he found are a = 18530, b=65570, c=45986. Find the fourth number, x. You. . . .

Take any whole number q. Calculate q^2 - 1. Factorize q^2-1 to give two factors a and b (not necessarily q+1 and q-1). Put c = a + b + 2q . Then you will find that ab+1 , bc+1 and ca+1 are all. . . .

Problem solving is at the heart of the NRICH site. All the problems give learners opportunities to learn, develop or use mathematical concepts and skills. Read here for more information.

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Prove Pythagoras' Theorem using enlargements and scale factors.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This is the second article on right-angled triangles whose edge lengths are whole numbers.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Take any whole number between 1 and 999, add the squares of the digits to get a new number. Make some conjectures about what happens in general.

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Patterns that repeat in a line are strangely interesting. How many types are there and how do you tell one type from another?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.