Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

ABCD is a square. P is the midpoint of AB and is joined to C. A line from D perpendicular to PC meets the line at the point Q. Prove AQ = AD.

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Kyle and his teacher disagree about his test score - who is right?

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Can you find the areas of the trapezia in this sequence?

This is the second of two articles and discusses problems relating to the curvature of space, shortest distances on surfaces, triangulations of surfaces and representation by graphs.

Prove Pythagoras' Theorem using enlargements and scale factors.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

How many noughts are at the end of these giant numbers?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Four jewellers share their stock. Can you work out the relative values of their gems?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

Three frogs started jumping randomly over any adjacent frog. Is it possible for them to finish up in the same order they started?

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

If you think that mathematical proof is really clearcut and universal then you should read this article.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

Construct two equilateral triangles on a straight line. There are two lengths that look the same - can you prove it?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

Prove that the internal angle bisectors of a triangle will never be perpendicular to each other.