We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

Toni Beardon has chosen this article introducing a rich area for practical exploration and discovery in 3D geometry

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

In this 7-sandwich: 7 1 3 1 6 4 3 5 7 2 4 6 2 5 there are 7 numbers between the 7s, 6 between the 6s etc. The article shows which values of n can make n-sandwiches and which cannot.

Take a triangular number, multiply it by 8 and add 1. What is special about your answer? Can you prove it?

Some diagrammatic 'proofs' of algebraic identities and inequalities.

When is it impossible to make number sandwiches?

Clearly if a, b and c are the lengths of the sides of an equilateral triangle then a^2 + b^2 + c^2 = ab + bc + ca. Is the converse true?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

Can you rearrange the cards to make a series of correct mathematical statements?

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Prove that if the integer n is divisible by 4 then it can be written as the difference of two squares.

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

Let a(n) be the number of ways of expressing the integer n as an ordered sum of 1's and 2's. Let b(n) be the number of ways of expressing n as an ordered sum of integers greater than 1. (i) Calculate. . . .

Investigate the sequences obtained by starting with any positive 2 digit number (10a+b) and repeatedly using the rule 10a+b maps to 10b-a to get the next number in the sequence.

A huge wheel is rolling past your window. What do you see?

If you think that mathematical proof is really clearcut and universal then you should read this article.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?

Can you make sense of the three methods to work out the area of the kite in the square?

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

This article discusses how every Pythagorean triple (a, b, c) can be illustrated by a square and an L shape within another square. You are invited to find some triples for yourself.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

Prove that, given any three parallel lines, an equilateral triangle always exists with one vertex on each of the three lines.

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Prove Pythagoras' Theorem using enlargements and scale factors.