Semicircles are drawn on the sides of a rectangle ABCD. A circle passing through points ABCD carves out four crescent-shaped regions. Prove that the sum of the areas of the four crescents is equal to. . . .

Points A, B and C are the centres of three circles, each one of which touches the other two. Prove that the perimeter of the triangle ABC is equal to the diameter of the largest circle.

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

It is obvious that we can fit four circles of diameter 1 unit in a square of side 2 without overlapping. What is the smallest square into which we can fit 3 circles of diameter 1 unit?

Can you find the areas of the trapezia in this sequence?

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

Can you make sense of these three proofs of Pythagoras' Theorem?

Spotting patterns can be an important first step - explaining why it is appropriate to generalise is the next step, and often the most interesting and important.

Prove Pythagoras' Theorem using enlargements and scale factors.

Can you make sense of the three methods to work out the area of the kite in the square?

A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Choose a couple of the sequences. Try to picture how to make the next, and the next, and the next... Can you describe your reasoning?

Caroline and James pick sets of five numbers. Charlie chooses three of them that add together to make a multiple of three. Can they stop him?

Eight children enter the autumn cross-country race at school. How many possible ways could they come in at first, second and third places?

Show that among the interior angles of a convex polygon there cannot be more than three acute angles.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

This jar used to hold perfumed oil. It contained enough oil to fill granid silver bottles. Each bottle held enough to fill ozvik golden goblets and each goblet held enough to fill vaswik crystal. . . .

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

We have exactly 100 coins. There are five different values of coins. We have decided to buy a piece of computer software for 39.75. We have the correct money, not a penny more, not a penny less! Can. . . .

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

If you know the sizes of the angles marked with coloured dots in this diagram which angles can you find by calculation?

What does logic mean to us and is that different to mathematical logic? We will explore these questions in this article.

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Keep constructing triangles in the incircle of the previous triangle. What happens?

A huge wheel is rolling past your window. What do you see?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

Here are some examples of 'cons', and see if you can figure out where the trick is.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

If you can copy a network without lifting your pen off the paper and without drawing any line twice, then it is traversable. Decide which of these diagrams are traversable.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Which set of numbers that add to 10 have the largest product?

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

In how many ways can you arrange three dice side by side on a surface so that the sum of the numbers on each of the four faces (top, bottom, front and back) is equal?

Nine cross country runners compete in a team competition in which there are three matches. If you were a judge how would you decide who would win?

Six points are arranged in space so that no three are collinear. How many line segments can be formed by joining the points in pairs?