Find the largest integer which divides every member of the following sequence: 1^5-1, 2^5-2, 3^5-3, ... n^5-n.

The diagram shows a regular pentagon with sides of unit length. Find all the angles in the diagram. Prove that the quadrilateral shown in red is a rhombus.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

This is the second article on right-angled triangles whose edge lengths are whole numbers.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Can you convince me of each of the following: If a square number is multiplied by a square number the product is ALWAYS a square number...

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Can you rearrange the cards to make a series of correct mathematical statements?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

What is the largest number of intersection points that a triangle and a quadrilateral can have?

When is it impossible to make number sandwiches?

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

A serious but easily readable discussion of proof in mathematics with some amusing stories and some interesting examples.

The sums of the squares of three related numbers is also a perfect square - can you explain why?

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

An iterative method for finding the value of the Golden Ratio with explanations of how this involves the ratios of Fibonacci numbers and continued fractions.

An article which gives an account of some properties of magic squares.

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Can you explain why a sequence of operations always gives you perfect squares?

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

Prove Pythagoras' Theorem using enlargements and scale factors.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

A picture is made by joining five small quadrilaterals together to make a large quadrilateral. Is it possible to draw a similar picture if all the small quadrilaterals are cyclic?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

A circle has centre O and angle POR = angle QOR. Construct tangents at P and Q meeting at T. Draw a circle with diameter OT. Do P and Q lie inside, or on, or outside this circle?

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

Prove that the shaded area of the semicircle is equal to the area of the inner circle.

If you think that mathematical proof is really clearcut and universal then you should read this article.

What happens to the perimeter of triangle ABC as the two smaller circles change size and roll around inside the bigger circle?

Investigate circuits and record your findings in this simple introduction to truth tables and logic.

Four jewellers share their stock. Can you work out the relative values of their gems?

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.