A blue coin rolls round two yellow coins which touch. The coins are the same size. How many revolutions does the blue coin make when it rolls all the way round the yellow coins? Investigate for a. . . .

Semicircles are drawn on the sides of a rectangle. Prove that the sum of the areas of the four crescents is equal to the area of the rectangle.

Can you find the areas of the trapezia in this sequence?

An equilateral triangle is sitting on top of a square. What is the radius of the circle that circumscribes this shape?

Some puzzles requiring no knowledge of knot theory, just a careful inspection of the patterns. A glimpse of the classification of knots and a little about prime knots, crossing numbers and. . . .

Three frogs started jumping randomly over any adjacent frog. Is it possible for them to finish up in the same order they started?

Take any rectangle ABCD such that AB > BC. The point P is on AB and Q is on CD. Show that there is exactly one position of P and Q such that APCQ is a rhombus.

Some diagrammatic 'proofs' of algebraic identities and inequalities.

The largest square which fits into a circle is ABCD and EFGH is a square with G and H on the line CD and E and F on the circumference of the circle. Show that AB = 5EF. Similarly the largest. . . .

This shape comprises four semi-circles. What is the relationship between the area of the shaded region and the area of the circle on AB as diameter?

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

Can you see how this picture illustrates the formula for the sum of the first six cube numbers?

We are given a regular icosahedron having three red vertices. Show that it has a vertex that has at least two red neighbours.

The first of five articles concentrating on whole number dynamics, ideas of general dynamical systems are introduced and seen in concrete cases.

Four jewellers share their stock. Can you work out the relative values of their gems?

This is the second article on right-angled triangles whose edge lengths are whole numbers.

This article extends the discussions in "Whole number dynamics I". Continuing the proof that, for all starting points, the Happy Number sequence goes into a loop or homes in on a fixed point.

In this third of five articles we prove that whatever whole number we start with for the Happy Number sequence we will always end up with some set of numbers being repeated over and over again.

The final of five articles which containe the proof of why the sequence introduced in article IV either reaches the fixed point 0 or the sequence enters a repeating cycle of four values.

Start with any whole number N, write N as a multiple of 10 plus a remainder R and produce a new whole number N'. Repeat. What happens?

If you think that mathematical proof is really clearcut and universal then you should read this article.

This article looks at knight's moves on a chess board and introduces you to the idea of vectors and vector addition.

The first of two articles on Pythagorean Triples which asks how many right angled triangles can you find with the lengths of each side exactly a whole number measurement. Try it!

Take any prime number greater than 3 , square it and subtract one. Working on the building blocks will help you to explain what is special about your results.

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

The nth term of a sequence is given by the formula n^3 + 11n . Find the first four terms of the sequence given by this formula and the first term of the sequence which is bigger than one million. . . .

I am exactly n times my daughter's age. In m years I shall be ... How old am I?

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

Show that if you add 1 to the product of four consecutive numbers the answer is ALWAYS a perfect square.

It is impossible to trisect an angle using only ruler and compasses but it can be done using a carpenter's square.

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

Imagine two identical cylindrical pipes meeting at right angles and think about the shape of the space which belongs to both pipes. Early Chinese mathematicians call this shape the mouhefanggai.

Draw some quadrilaterals on a 9-point circle and work out the angles. Is there a theorem?

Explore what happens when you draw graphs of quadratic equations with coefficients based on a geometric sequence.

This article stems from research on the teaching of proof and offers guidance on how to move learners from focussing on experimental arguments to mathematical arguments and deductive reasoning.

Can you make sense of these three proofs of Pythagoras' Theorem?

Can you rearrange the cards to make a series of correct mathematical statements?

What fractions can you divide the diagonal of a square into by simple folding?

L triominoes can fit together to make larger versions of themselves. Is every size possible to make in this way?

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

When is it impossible to make number sandwiches?

What is the largest number of intersection points that a triangle and a quadrilateral can have?

If I tell you two sides of a right-angled triangle, you can easily work out the third. But what if the angle between the two sides is not a right angle?