Search by Topic

Resources tagged with Mathematical reasoning & proof similar to Magic Squares for Special Occasions:

Filter by: Content type:
Stage:
Challenge level: Challenge Level:1 Challenge Level:2 Challenge Level:3

There are 176 results

Broad Topics > Using, Applying and Reasoning about Mathematics > Mathematical reasoning & proof

problem icon

Eleven

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Replace each letter with a digit to make this addition correct.

problem icon

Always the Same

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Arrange the numbers 1 to 16 into a 4 by 4 array. Choose a number. Cross out the numbers on the same row and column. Repeat this process. Add up you four numbers. Why do they always add up to 34?

problem icon

Tis Unique

Stage: 3 Challenge Level: Challenge Level:1

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

problem icon

Pyramids

Stage: 3 Challenge Level: Challenge Level:1

What are the missing numbers in the pyramids?

problem icon

Top-heavy Pyramids

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Use the numbers in the box below to make the base of a top-heavy pyramid whose top number is 200.

problem icon

Aba

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In the following sum the letters A, B, C, D, E and F stand for six distinct digits. Find all the ways of replacing the letters with digits so that the arithmetic is correct.

problem icon

Sticky Numbers

Stage: 3 Challenge Level: Challenge Level:1

Can you arrange the numbers 1 to 17 in a row so that each adjacent pair adds up to a square number?

problem icon

Calendar Capers

Stage: 3 Challenge Level: Challenge Level:1

Choose any three by three square of dates on a calendar page...

problem icon

Postage

Stage: 4 Challenge Level: Challenge Level:1

The country Sixtania prints postage stamps with only three values 6 lucres, 10 lucres and 15 lucres (where the currency is in lucres).Which values cannot be made up with combinations of these postage. . . .

problem icon

Unit Interval

Stage: 4 and 5 Challenge Level: Challenge Level:1

Take any two numbers between 0 and 1. Prove that the sum of the numbers is always less than one plus their product?

problem icon

9 Weights

Stage: 3 Challenge Level: Challenge Level:1

You have been given nine weights, one of which is slightly heavier than the rest. Can you work out which weight is heavier in just two weighings of the balance?

problem icon

Chocolate Maths

Stage: 3 Challenge Level: Challenge Level:1

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

problem icon

Advent Calendar 2011 - Secondary

Stage: 3, 4 and 5 Challenge Level: Challenge Level:1

Advent Calendar 2011 - a mathematical activity for each day during the run-up to Christmas.

problem icon

Is it Magic or Is it Maths?

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Here are three 'tricks' to amaze your friends. But the really clever trick is explaining to them why these 'tricks' are maths not magic. Like all good magicians, you should practice by trying. . . .

problem icon

Not Necessarily in That Order

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Baker, Cooper, Jones and Smith are four people whose occupations are teacher, welder, mechanic and programmer, but not necessarily in that order. What is each person’s occupation?

problem icon

DOTS Division

Stage: 4 Challenge Level: Challenge Level:1

Take any pair of two digit numbers x=ab and y=cd where, without loss of generality, ab > cd . Form two 4 digit numbers r=abcd and s=cdab and calculate: {r^2 - s^2} /{x^2 - y^2}.

problem icon

Janine's Conjecture

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Janine noticed, while studying some cube numbers, that if you take three consecutive whole numbers and multiply them together and then add the middle number of the three, you get the middle number. . . .

problem icon

Cycle It

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

problem icon

Clocked

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Is it possible to rearrange the numbers 1,2......12 around a clock face in such a way that every two numbers in adjacent positions differ by any of 3, 4 or 5 hours?

problem icon

Leonardo's Problem

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A, B & C own a half, a third and a sixth of a coin collection. Each grab some coins, return some, then share equally what they had put back, finishing with their own share. How rich are they?

problem icon

Multiplication Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Pick a square within a multiplication square and add the numbers on each diagonal. What do you notice?

problem icon

AMGM

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Can you use the diagram to prove the AM-GM inequality?

problem icon

Pythagoras Proofs

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Can you make sense of these three proofs of Pythagoras' Theorem?

problem icon

The Great Weights Puzzle

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

You have twelve weights, one of which is different from the rest. Using just 3 weighings, can you identify which weight is the odd one out, and whether it is heavier or lighter than the rest?

problem icon

More Mathematical Mysteries

Stage: 3 Challenge Level: Challenge Level:1

Write down a three-digit number Change the order of the digits to get a different number Find the difference between the two three digit numbers Follow the rest of the instructions then try. . . .

problem icon

A Long Time at the Till

Stage: 4 and 5 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Try to solve this very difficult problem and then study our two suggested solutions. How would you use your knowledge to try to solve variants on the original problem?

problem icon

Composite Notions

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A composite number is one that is neither prime nor 1. Show that 10201 is composite in any base.

problem icon

Pattern of Islands

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

In how many distinct ways can six islands be joined by bridges so that each island can be reached from every other island...

problem icon

Hockey

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

After some matches were played, most of the information in the table containing the results of the games was accidentally deleted. What was the score in each match played?

problem icon

Mediant

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If you take two tests and get a marks out of a maximum b in the first and c marks out of d in the second, does the mediant (a+c)/(b+d)lie between the results for the two tests separately.

problem icon

Never Prime

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

If a two digit number has its digits reversed and the smaller of the two numbers is subtracted from the larger, prove the difference can never be prime.

problem icon

Mindreader

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

A little bit of algebra explains this 'magic'. Ask a friend to pick 3 consecutive numbers and to tell you a multiple of 3. Then ask them to add the four numbers and multiply by 67, and to tell you. . . .

problem icon

Mod 3

Stage: 4 Challenge Level: Challenge Level:1

Prove that if a^2+b^2 is a multiple of 3 then both a and b are multiples of 3.

problem icon

Three Frogs

Stage: 4 Challenge Level: Challenge Level:1

Three frogs hopped onto the table. A red frog on the left a green in the middle and a blue frog on the right. Then frogs started jumping randomly over any adjacent frog. Is it possible for them to. . . .

problem icon

Unit Fractions

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Consider the equation 1/a + 1/b + 1/c = 1 where a, b and c are natural numbers and 0 < a < b < c. Prove that there is only one set of values which satisfy this equation.

problem icon

A Chordingly

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Find the area of the annulus in terms of the length of the chord which is tangent to the inner circle.

problem icon

Long Short

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

What can you say about the lengths of the sides of a quadrilateral whose vertices are on a unit circle?

problem icon

Some Circuits in Graph or Network Theory

Stage: 4 and 5

Eulerian and Hamiltonian circuits are defined with some simple examples and a couple of puzzles to illustrate Hamiltonian circuits.

problem icon

A Biggy

Stage: 4 Challenge Level: Challenge Level:1

Find the smallest positive integer N such that N/2 is a perfect cube, N/3 is a perfect fifth power and N/5 is a perfect seventh power.

problem icon

Sprouts Explained

Stage: 2, 3, 4 and 5

This article invites you to get familiar with a strategic game called "sprouts". The game is simple enough for younger children to understand, and has also provided experienced mathematicians with. . . .

problem icon

Tessellating Hexagons

Stage: 3 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Which hexagons tessellate?

problem icon

There's a Limit

Stage: 4 and 5 Challenge Level: Challenge Level:1

Explore the continued fraction: 2+3/(2+3/(2+3/2+...)) What do you notice when successive terms are taken? What happens to the terms if the fraction goes on indefinitely?

problem icon

Paradoxes

Stage: 2 and 3

A paradox is a statement that seems to be both untrue and true at the same time. This article looks at a few examples and challenges you to investigate them for yourself.

problem icon

Königsberg

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

Can you cross each of the seven bridges that join the north and south of the river to the two islands, once and once only, without retracing your steps?

problem icon

Perfectly Square

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

The sums of the squares of three related numbers is also a perfect square - can you explain why?

problem icon

Children at Large

Stage: 3 Challenge Level: Challenge Level:2 Challenge Level:2

There are four children in a family, two girls, Kate and Sally, and two boys, Tom and Ben. How old are the children?

problem icon

Natural Sum

Stage: 4 Challenge Level: Challenge Level:1

The picture illustrates the sum 1 + 2 + 3 + 4 = (4 x 5)/2. Prove the general formula for the sum of the first n natural numbers and the formula for the sum of the cubes of the first n natural. . . .

problem icon

Gift of Gems

Stage: 4 Challenge Level: Challenge Level:2 Challenge Level:2

Four jewellers share their stock. Can you work out the relative values of their gems?

problem icon

Square Mean

Stage: 4 Challenge Level: Challenge Level:1

Is the mean of the squares of two numbers greater than, or less than, the square of their means?

problem icon

Cosines Rule

Stage: 4 Challenge Level: Challenge Level:3 Challenge Level:3 Challenge Level:3

Three points A, B and C lie in this order on a line, and P is any point in the plane. Use the Cosine Rule to prove the following statement.