Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Number problems at primary level that may require resilience.

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

Number problems at primary level to work on with others.

There are six numbers written in five different scripts. Can you sort out which is which?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

A school song book contains 700 songs. The numbers of the songs are displayed by combining special small single-digit boards. What is the minimum number of small boards that is needed?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

Have a go at balancing this equation. Can you find different ways of doing it?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Number problems at primary level that require careful consideration.

What is the sum of all the digits in all the integers from one to one million?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Explore the relationship between simple linear functions and their graphs.

Can you work out some different ways to balance this equation?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Can you replace the letters with numbers? Is there only one solution in each case?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Number problems for inquiring primary learners.

What happens when you round these three-digit numbers to the nearest 100?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

What happens when you round these numbers to the nearest whole number?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

How many six digit numbers are there which DO NOT contain a 5?

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

The number 3723(in base 10) is written as 123 in another base. What is that base?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. . . .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

When asked how old she was, the teacher replied: My age in years is not prime but odd and when reversed and added to my age you have a perfect square...