Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

How many more miles must the car travel before the numbers on the milometer and the trip meter contain the same digits in the same order?

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Take any four digit number. Move the first digit to the 'back of the queue' and move the rest along. Now add your two numbers. What properties do your answers always have?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Can you show that 1^99 + 2^99 + 3^99 + 4^99 + 5^99 is divisible by 5?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

This article, written for teachers, looks at the different kinds of recordings encountered in Primary Mathematics lessons and the importance of not jumping to conclusions!

Think of any three-digit number. Repeat the digits. The 6-digit number that you end up with is divisible by 91. Is this a coincidence?

Choose two digits and arrange them to make two double-digit numbers. Now add your double-digit numbers. Now add your single digit numbers. Divide your double-digit answer by your single-digit answer. . . .

This article for the young and old talks about the origins of our number system and the important role zero has to play in it.

When asked how old she was, the teacher replied: My age in years is not prime but odd and when reversed and added to my age you have a perfect square...

Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

What happens when you round these numbers to the nearest whole number?

Using balancing scales what is the least number of weights needed to weigh all integer masses from 1 to 1000? Placing some of the weights in the same pan as the object how many are needed?

Nowadays the calculator is very familiar to many of us. What did people do to save time working out more difficult problems before the calculator existed?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What happens when you round these three-digit numbers to the nearest 100?

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

The number 3723(in base 10) is written as 123 in another base. What is that base?

Take the numbers 1, 2, 3, 4 and 5 and imagine them written down in every possible order to give 5 digit numbers. Find the sum of the resulting numbers.

How many six digit numbers are there which DO NOT contain a 5?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

Watch our videos of multiplication methods that you may not have met before. Can you make sense of them?

There are two forms of counting on Vuvv - Zios count in base 3 and Zepts count in base 7. One day four of these creatures, two Zios and two Zepts, sat on the summit of a hill to count the legs of. . . .

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Number problems at primary level that require careful consideration.

Explore the relationship between simple linear functions and their graphs.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Can you work out some different ways to balance this equation?

Have a go at balancing this equation. Can you find different ways of doing it?

Dicey Operations for an adult and child. Can you get close to 1000 than your partner?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.