Four of these clues are needed to find the chosen number on this grid and four are true but do nothing to help in finding the number. Can you sort out the clues and find the number?

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

A school song book contains 700 songs. The numbers of the songs are displayed by combining special small single-digit cards. What is the minimum number of small cards that is needed?

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Number problems at primary level that require careful consideration.

Number problems at primary level that may require resilience.

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Number problems for inquiring primary learners.

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

There are six numbers written in five different scripts. Can you sort out which is which?

Using balancing scales what is the least number of weights needed to weigh all integer masses from 1 to 1000? Placing some of the weights in the same pan as the object how many are needed?

Consider all of the five digit numbers which we can form using only the digits 2, 4, 6 and 8. If these numbers are arranged in ascending order, what is the 512th number?

Find the values of the nine letters in the sum: FOOT + BALL = GAME

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Can you arrange the digits 1,2,3,4,5,6,7,8,9 into three 3-digit numbers such that their total is close to 1500?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

What happens when you round these three-digit numbers to the nearest 100?

Can you replace the letters with numbers? Is there only one solution in each case?

Have a go at balancing this equation. Can you find different ways of doing it?

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Find the sum of all three-digit numbers each of whose digits is odd.

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

Can you work out some different ways to balance this equation?

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Try out some calculations. Are you surprised by the results?

What happens when you round these numbers to the nearest whole number?

Think of a two digit number, reverse the digits, and add the numbers together. Something special happens...

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

Explore the relationship between simple linear functions and their graphs.

Number problems at primary level to work on with others.

Amazing as it may seem the three fives remaining in the following `skeleton' are sufficient to reconstruct the entire long division sum.

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

The number 3723(in base 10) is written as 123 in another base. What is that base?

When the number x 1 x x x is multiplied by 417 this gives the answer 9 x x x 0 5 7. Find the missing digits, each of which is represented by an "x" .

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

Carry out cyclic permutations of nine digit numbers containing the digits from 1 to 9 (until you get back to the first number). Prove that whatever number you choose, they will add to the same total.

How many six digit numbers are there which DO NOT contain a 5?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?