A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Dicey Operations for an adult and child. Can you get close to 1000 than your partner?

Some Games That May Be Nice or Nasty for an adult and child. Use your knowledge of place value to beat your opponent.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Choose four different digits from 1-9 and put one in each box so that the resulting four two-digit numbers add to a total of 100.

The letters in the following addition sum represent the digits 1 ... 9. If A=3 and D=2, what number is represented by "CAYLEY"?

How many solutions can you find to this sum? Each of the different letters stands for a different number.

Find the values of the nine letters in the sum: FOOT + BALL = GAME

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

What do the digits in the number fifteen add up to? How many other numbers have digits with the same total but no zeros?

Have a go at balancing this equation. Can you find different ways of doing it?

This multiplication uses each of the digits 0 - 9 once and once only. Using the information given, can you replace the stars in the calculation with figures?

Can you complete this calculation by filling in the missing numbers? In how many different ways can you do it?

Can you work out some different ways to balance this equation?

Number problems for inquiring primary learners.

Number problems at primary level that require careful consideration.

Can you replace the letters with numbers? Is there only one solution in each case?

Can you substitute numbers for the letters in these sums?

What happens when you round these three-digit numbers to the nearest 100?

Pick the number of times a week that you eat chocolate. This number must be more than one but less than ten. Multiply this number by 2. Add 5 (for Sunday). Multiply by 50... Can you explain why it. . . .

In the multiplication calculation, some of the digits have been replaced by letters and others by asterisks. Can you reconstruct the original multiplication?

Find the sum of all three-digit numbers each of whose digits is odd.

Becky created a number plumber which multiplies by 5 and subtracts 4. What do you notice about the numbers that it produces? Can you explain your findings?

What happens when you round these numbers to the nearest whole number?

A three digit number abc is always divisible by 7 when 2a+3b+c is divisible by 7. Why?

Use two dice to generate two numbers with one decimal place. What happens when you round these numbers to the nearest whole number?

Each child in Class 3 took four numbers out of the bag. Who had made the highest even number?

Which is quicker, counting up to 30 in ones or counting up to 300 in tens? Why?

Investigate the different ways these aliens count in this challenge. You could start by thinking about how each of them would write our number 7.

The Scot, John Napier, invented these strips about 400 years ago to help calculate multiplication and division. Can you work out how to use Napier's bones to find the answer to these multiplications?

Choose any 3 digits and make a 6 digit number by repeating the 3 digits in the same order (e.g. 594594). Explain why whatever digits you choose the number will always be divisible by 7, 11 and 13.

Consider all two digit numbers (10, 11, . . . ,99). In writing down all these numbers, which digits occur least often, and which occur most often ? What about three digit numbers, four digit numbers. . . .

This addition sum uses all ten digits 0, 1, 2...9 exactly once. Find the sum and show that the one you give is the only possibility.

The number 27 is special because it is three times the sum of its digits 27 = 3 (2 + 7). Find some two digit numbers that are SEVEN times the sum of their digits (seven-up numbers)?

Number problems at primary level to work on with others.

Powers of numbers behave in surprising ways. Take a look at some of these and try to explain why they are true.

In this 100 square, look at the green square which contains the numbers 2, 3, 12 and 13. What is the sum of the numbers that are diagonally opposite each other? What do you notice?

How many six digit numbers are there which DO NOT contain a 5?

Number problems at primary level that may require resilience.

A school song book contains 700 songs. The numbers of the songs are displayed by combining special small single-digit cards. What is the minimum number of small cards that is needed?

There are six numbers written in five different scripts. Can you sort out which is which?

What is the sum of all the digits in all the integers from one to one million?

Consider all of the five digit numbers which we can form using only the digits 2, 4, 6 and 8. If these numbers are arranged in ascending order, what is the 512th number?

Can you show that 1^99 + 2^99 + 3^99 + 4^99 + 5^99 is divisible by 5?

How many positive integers less than or equal to 4000 can be written down without using the digits 7, 8 or 9?

Take any four digit number. Move the first digit to the end and move the rest along. Now add your two numbers. Did you get a multiple of 11?

32 x 38 = 30 x 40 + 2 x 8; 34 x 36 = 30 x 40 + 4 x 6; 56 x 54 = 50 x 60 + 6 x 4; 73 x 77 = 70 x 80 + 3 x 7 Verify and generalise if possible.