Try ringing hand bells for yourself with interactive versions of Diagram 2 (Plain Hunt Minimus) and Diagram 3 described in the article 'Ding Dong Bell'.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Can you find a way to turn a rectangle into a square?

Can you use small coloured cubes to make a 3 by 3 by 3 cube so that each face of the bigger cube contains one of each colour?

A game in which players take it in turns to choose a number. Can you block your opponent?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use Excel to explore multiplication of fractions.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

To avoid losing think of another very well known game where the patterns of play are similar.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

Practise your skills of proportional reasoning with this interactive haemocytometer.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Use this interactivity to sort out the steps of the proof of the formula for the sum of an arithmetic series. The 'thermometer' will tell you how you are doing

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you locate these values on this interactive logarithmic scale?

How good are you at finding the formula for a number pattern ?

Can you beat the computer in the challenging strategy game?

Here is a chance to play a fractions version of the classic Countdown Game.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Discover a handy way to describe reorderings and solve our anagram in the process.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

A collection of our favourite pictorial problems, one for each day of Advent.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

A group of interactive resources to support work on percentages Key Stage 4.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Use an Excel spreadsheet to explore long multiplication.

Use an interactive Excel spreadsheet to investigate factors and multiples.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.