Can you beat the computer in the challenging strategy game?

This is an interactivity in which you have to sort into the correct order the steps in the proof of the formula for the sum of a geometric series.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Re-arrange the pieces of the puzzle to form a rectangle and then to form an equilateral triangle. Calculate the angles and lengths.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Use Excel to explore multiplication of fractions.

To avoid losing think of another very well known game where the patterns of play are similar.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Match the cards of the same value.

A weekly challenge concerning prime numbers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A tool for generating random integers.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A collection of our favourite pictorial problems, one for each day of Advent.

Here is a chance to play a fractions version of the classic Countdown Game.

How good are you at finding the formula for a number pattern ?

A metal puzzle which led to some mathematical questions.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you locate these values on this interactive logarithmic scale?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Cellular is an animation that helps you make geometric sequences composed of square cells.

Can you work through these direct proofs, using our interactive proof sorters?

Discover a handy way to describe reorderings and solve our anagram in the process.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

An Excel spreadsheet with an investigation.

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

A collection of resources to support work on Factors and Multiples at Secondary level.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.