Take any parallelogram and draw squares on the sides of the parallelogram. What can you prove about the quadrilateral formed by joining the centres of these squares?

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

A metal puzzle which led to some mathematical questions.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

How good are you at finding the formula for a number pattern ?

How can we solve equations like 13x + 29y = 42 or 2x +4y = 13 with the solutions x and y being integers? Read this article to find out.

Give your further pure mathematics skills a workout with this interactive and reusable set of activities.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Match the cards of the same value.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Use Excel to explore multiplication of fractions.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

A spherical balloon lies inside a wire frame. How much do you need to deflate it to remove it from the frame if it remains a sphere?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

With red and blue beads on a circular wire; 'put a red bead between any two of the same colour and a blue between different colours then remove the original beads'. Keep repeating this. What happens?

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Mathmo is a revision tool for post-16 mathematics. It's great installed as a smartphone app, but it works well in pads and desktops and notebooks too. Give yourself a mathematical workout!

A tool for generating random integers.

A weekly challenge concerning prime numbers.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A collection of our favourite pictorial problems, one for each day of Advent.

Here is a chance to play a fractions version of the classic Countdown Game.

Make and prove a conjecture about the cyclic quadrilateral inscribed in a circle of radius r that has the maximum perimeter and the maximum area.

Can you beat the computer in the challenging strategy game?

Can you locate these values on this interactive logarithmic scale?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Cellular is an animation that helps you make geometric sequences composed of square cells.

Can you work through these direct proofs, using our interactive proof sorters?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.