Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

An environment that enables you to investigate tessellations of regular polygons

Match pairs of cards so that they have equivalent ratios.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Use Excel to explore multiplication of fractions.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Try this interactivity to familiarise yourself with the proof that the square root of 2 is irrational. Sort the steps of the proof into the correct order.

To avoid losing think of another very well known game where the patterns of play are similar.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Here is a chance to play a fractions version of the classic Countdown Game.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

A tool for generating random integers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you beat the computer in the challenging strategy game?

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Match the cards of the same value.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Use Excel to investigate the effect of translations around a number grid.

A metal puzzle which led to some mathematical questions.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Six circles around a central circle make a flower. Watch the flower as you change the radii in this circle packing. Prove that with the given ratios of the radii the petals touch and fit perfectly.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

With red and blue beads on a circular wire; 'put a red bead between any two of the same colour and a blue between different colours then remove the original beads'. Keep repeating this. What happens?

Can you locate these values on this interactive logarithmic scale?

Cellular is an animation that helps you make geometric sequences composed of square cells.