Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Which dilutions can you make using only 10ml pipettes?

Which exact dilution ratios can you make using only 2 dilutions?

Can you break down this conversion process into logical steps?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Can you fill in the mixed up numbers in this dilution calculation?

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

A metal puzzle which led to some mathematical questions.

Practise your skills of proportional reasoning with this interactive haemocytometer.

An environment that enables you to investigate tessellations of regular polygons

Discover a handy way to describe reorderings and solve our anagram in the process.

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you set the logic gates so that the number of bulbs which are on is the same as the number of switches which are on?

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Can you beat the computer in the challenging strategy game?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Use Excel to explore multiplication of fractions.

To avoid losing think of another very well known game where the patterns of play are similar.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

Cellular is an animation that helps you make geometric sequences composed of square cells.

How good are you at finding the formula for a number pattern ?

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.