This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

Prove Pythagoras' Theorem using enlargements and scale factors.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

To avoid losing think of another very well known game where the patterns of play are similar.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

A collection of resources to support work on Factors and Multiples at Secondary level.

How good are you at finding the formula for a number pattern ?

Have you seen this way of doing multiplication ?

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Use Excel to explore multiplication of fractions.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

A collection of our favourite pictorial problems, one for each day of Advent.

A tool for generating random integers.

Here is a chance to play a fractions version of the classic Countdown Game.

Here is a chance to play a version of the classic Countdown Game.

Cellular is an animation that helps you make geometric sequences composed of square cells.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Can you explain the strategy for winning this game with any target?

A game in which players take it in turns to choose a number. Can you block your opponent?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

The classic vector racing game brought to a screen near you.

Practise your skills of proportional reasoning with this interactive haemocytometer.

Can you work out which spinners were used to generate the frequency charts?

Match the cards of the same value.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.