Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use Excel to explore multiplication of fractions.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

To avoid losing think of another very well known game where the patterns of play are similar.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Match pairs of cards so that they have equivalent ratios.

Match the cards of the same value.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Can you beat the computer in the challenging strategy game?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Discover a handy way to describe reorderings and solve our anagram in the process.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A metal puzzle which led to some mathematical questions.

An environment that enables you to investigate tessellations of regular polygons

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A collection of resources to support work on Factors and Multiples at Secondary level.

Here is a chance to play a fractions version of the classic Countdown Game.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A collection of our favourite pictorial problems, one for each day of Advent.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A tool for generating random integers.

The classic vector racing game brought to a screen near you.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use an Excel spreadsheet to explore long multiplication.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use Excel to practise adding and subtracting fractions.

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .