Try entering different sets of numbers in the number pyramids. How does the total at the top change?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

How good are you at finding the formula for a number pattern ?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you explain the strategy for winning this game with any target?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

A collection of resources to support work on Factors and Multiples at Secondary level.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Prove Pythagoras' Theorem using enlargements and scale factors.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.