Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Which dilutions can you make using only 10ml pipettes?

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Can you break down this conversion process into logical steps?

Which exact dilution ratios can you make using only 2 dilutions?

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Can you fill in the mixed up numbers in this dilution calculation?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

Practise your skills of proportional reasoning with this interactive haemocytometer.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

A group of interactive resources to support work on percentages Key Stage 4.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use Excel to explore multiplication of fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

To avoid losing think of another very well known game where the patterns of play are similar.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.