Can you work out which spinners were used to generate the frequency charts?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Can you find triangles on a 9-point circle? Can you work out their angles?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

An environment that enables you to investigate tessellations of regular polygons

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

An Excel spreadsheet with an investigation.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

The classic vector racing game brought to a screen near you.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

A tool for generating random integers.

Use an Excel spreadsheet to explore long multiplication.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .