Can you work out which spinners were used to generate the frequency charts?

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Use Excel to explore multiplication of fractions.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Use an interactive Excel spreadsheet to investigate factors and multiples.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

An Excel spreadsheet with an investigation.

Use an Excel spreadsheet to explore long multiplication.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

To avoid losing think of another very well known game where the patterns of play are similar.

Can you explain the strategy for winning this game with any target?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.