Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Practise your skills of proportional reasoning with this interactive haemocytometer.

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

A collection of resources to support work on Factors and Multiples at Secondary level.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

A group of interactive resources to support work on percentages Key Stage 4.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

An environment that enables you to investigate tessellations of regular polygons

Can you beat the computer in the challenging strategy game?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Match the cards of the same value.

A metal puzzle which led to some mathematical questions.

To avoid losing think of another very well known game where the patterns of play are similar.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Use Excel to explore multiplication of fractions.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Discover a handy way to describe reorderings and solve our anagram in the process.

This set of resources for teachers offers interactive environments to support work on graphical interpretation at Key Stage 4.

Use an Excel spreadsheet to explore long multiplication.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The classic vector racing game brought to a screen near you.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

A tool for generating random integers.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

How good are you at finding the formula for a number pattern ?

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?