This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Use an Excel spreadsheet to explore long multiplication.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to investigate the effect of translations around a number grid.

An Excel spreadsheet with an investigation.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to practise adding and subtracting fractions.

A tool for generating random integers.

Match pairs of cards so that they have equivalent ratios.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Have you seen this way of doing multiplication ?

Here is a chance to play a fractions version of the classic Countdown Game.

A collection of our favourite pictorial problems, one for each day of Advent.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use Excel to explore multiplication of fractions.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Practise your skills of proportional reasoning with this interactive haemocytometer.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

Cellular is an animation that helps you make geometric sequences composed of square cells.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Square It game for an adult and child. Can you come up with a way of always winning this game?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

The classic vector racing game brought to a screen near you.