Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This resources contains a series of interactivities designed to support work on transformations at Key Stage 4.

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

There are thirteen axes of rotational symmetry of a unit cube. Describe them all. What is the average length of the parts of the axes of symmetry which lie inside the cube?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Use Excel to explore multiplication of fractions.

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

An Excel spreadsheet with an investigation.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

Use Excel to practise adding and subtracting fractions.

A collection of our favourite pictorial problems, one for each day of Advent.

Here is a chance to play a fractions version of the classic Countdown Game.

Use an interactive Excel spreadsheet to investigate factors and multiples.

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A tool for generating random integers.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Work out how to light up the single light. What's the rule?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory