Can you work out which spinners were used to generate the frequency charts?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Four cards are shuffled and placed into two piles of two. Starting with the first pile of cards - turn a card over... You win if all your cards end up in the trays before you run out of cards in. . . .

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Use Excel to explore multiplication of fractions.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Match pairs of cards so that they have equivalent ratios.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

An environment that enables you to investigate tessellations of regular polygons

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Which exact dilution ratios can you make using only 2 dilutions?

Can you fill in the mixed up numbers in this dilution calculation?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Here is a chance to play a fractions version of the classic Countdown Game.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

To avoid losing think of another very well known game where the patterns of play are similar.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use an interactive Excel spreadsheet to explore number in this exciting game!

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Use Excel to investigate the effect of translations around a number grid.

A group of interactive resources to support work on percentages Key Stage 4.