Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Can you find a way to turn a rectangle into a square?

Triangle ABC has equilateral triangles drawn on its edges. Points P, Q and R are the centres of the equilateral triangles. What can you prove about the triangle PQR?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Use Excel to explore multiplication of fractions.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Use Excel to investigate the effect of translations around a number grid.

A group of interactive resources to support work on percentages Key Stage 4.

A collection of resources to support work on Factors and Multiples at Secondary level.

An environment that enables you to investigate tessellations of regular polygons

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Use an interactive Excel spreadsheet to explore number in this exciting game!

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Use an Excel spreadsheet to explore long multiplication.

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Here is a chance to play a fractions version of the classic Countdown Game.

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

An Excel spreadsheet with an investigation.

Use an interactive Excel spreadsheet to investigate factors and multiples.

Use Excel to practise adding and subtracting fractions.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

To avoid losing think of another very well known game where the patterns of play are similar.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Can you explain the strategy for winning this game with any target?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Can you fill in the mixed up numbers in this dilution calculation?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Practise your skills of proportional reasoning with this interactive haemocytometer.

Can you work out which spinners were used to generate the frequency charts?