Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Can you find triangles on a 9-point circle? Can you work out their angles?

Can you explain the strategy for winning this game with any target?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Use Excel to explore multiplication of fractions.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Use an Excel spreadsheet to explore long multiplication.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

Use Excel to investigate the effect of translations around a number grid.