When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Can you explain the strategy for winning this game with any target?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Use an interactive Excel spreadsheet to investigate factors and multiples.

An Excel spreadsheet with an investigation.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

To avoid losing think of another very well known game where the patterns of play are similar.

Use Excel to practise adding and subtracting fractions.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A group of interactive resources to support work on percentages Key Stage 4.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Use Excel to explore multiplication of fractions.