Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Find all the ways of placing the numbers 1 to 9 on a W shape, with 3 numbers on each leg, so that each set of 3 numbers has the same total.

To avoid losing think of another very well known game where the patterns of play are similar.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

How good are you at finding the formula for a number pattern ?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Can you beat the computer in the challenging strategy game?

Match pairs of cards so that they have equivalent ratios.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Can you explain the strategy for winning this game with any target?

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.