Use the computer to model an epidemic. Try out public health policies to control the spread of the epidemic, to minimise the number of sick days and deaths.

Which dilutions can you make using only 10ml pipettes?

A ladder 3m long rests against a wall with one end a short distance from its base. Between the wall and the base of a ladder is a garden storage box 1m tall and 1m high. What is the maximum distance. . . .

It is possible to identify a particular card out of a pack of 15 with the use of some mathematical reasoning. What is this reasoning and can it be applied to other numbers of cards?

Which exact dilution ratios can you make using only 2 dilutions?

Which dilutions can you make using 10ml pipettes and 100ml measuring cylinders?

Use your skill and knowledge to place various scientific lengths in order of size. Can you judge the length of objects with sizes ranging from 1 Angstrom to 1 million km with no wrong attempts?

Can you break down this conversion process into logical steps?

Can you fill in the mixed up numbers in this dilution calculation?

Use this animation to experiment with lotteries. Choose how many balls to match, how many are in the carousel, and how many draws to make at once.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

A simple spinner that is equally likely to land on Red or Black. Useful if tossing a coin, dropping it, and rummaging about on the floor have lost their appeal. Needs a modern browser; if IE then at. . . .

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Practise your skills of proportional reasoning with this interactive haemocytometer.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Practice your skills of measurement and estimation using this interactive measurement tool based around fascinating images from biology.

Match pairs of cards so that they have equivalent ratios.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use Excel to explore multiplication of fractions.

A collection of our favourite pictorial problems, one for each day of Advent.

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

An environment that enables you to investigate tessellations of regular polygons

Overlaying pentominoes can produce some effective patterns. Why not use LOGO to try out some of the ideas suggested here?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

To avoid losing think of another very well known game where the patterns of play are similar.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A java applet that takes you through the steps needed to solve a Diophantine equation of the form Px+Qy=1 using Euclid's algorithm.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Use an interactive Excel spreadsheet to explore number in this exciting game!

Use Excel to investigate the effect of translations around a number grid.

A group of interactive resources to support work on percentages Key Stage 4.

Use an Excel spreadsheet to explore long multiplication.

Use Excel to practise adding and subtracting fractions.

Use an interactive Excel spreadsheet to investigate factors and multiples.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

An Excel spreadsheet with an investigation.