Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Use the interactivity to play two of the bells in a pattern. How do you know when it is your turn to ring, and how do you know which bell to ring?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

To avoid losing think of another very well known game where the patterns of play are similar.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

An activity based on the game 'Pelmanism'. Set your own level of challenge and beat your own previous best score.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Here is a chance to play a version of the classic Countdown Game.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you find triangles on a 9-point circle? Can you work out their angles?

Use the interactivity to listen to the bells ringing a pattern. Now it's your turn! Play one of the bells yourself. How do you know when it is your turn to ring?

Can you explain the strategy for winning this game with any target?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .