It's easy to work out the areas of most squares that we meet, but what if they were tilted?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Can you explain the strategy for winning this game with any target?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

To avoid losing think of another very well known game where the patterns of play are similar.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Here is a chance to play a version of the classic Countdown Game.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

A metal puzzle which led to some mathematical questions.

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Two circles of equal radius touch at P. One circle is fixed whilst the other moves, rolling without slipping, all the way round. How many times does the moving coin revolve before returning to P?

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory