It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

To avoid losing think of another very well known game where the patterns of play are similar.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

Prove Pythagoras' Theorem using enlargements and scale factors.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Can you explain the strategy for winning this game with any target?

The computer has made a rectangle and will tell you the number of spots it uses in total. Can you find out where the rectangle is?

An environment that simulates a protractor carrying a right- angled triangle of unit hypotenuse.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

Can you find triangles on a 9-point circle? Can you work out their angles?

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

in how many ways can you place the numbers 1, 2, 3 … 9 in the nine regions of the Olympic Emblem (5 overlapping circles) so that the amount in each ring is the same?

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

An environment that enables you to investigate tessellations of regular polygons

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

A collection of resources to support work on Factors and Multiples at Secondary level.

How good are you at finding the formula for a number pattern ?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Can you beat the computer in the challenging strategy game?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.