Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

Use an Excel spreadsheet to explore long multiplication.

Use Excel to explore multiplication of fractions.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A group of interactive resources to support work on percentages Key Stage 4.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Use an interactive Excel spreadsheet to explore number in this exciting game!

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Match pairs of cards so that they have equivalent ratios.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

Can you beat the computer in the challenging strategy game?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

This is an interactive net of a Rubik's cube. Twists of the 3D cube become mixes of the squares on the 2D net. Have a play and see how many scrambles you can undo!

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to investigate factors and multiples.

P is a point on the circumference of a circle radius r which rolls, without slipping, inside a circle of radius 2r. What is the locus of P?

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Have you seen this way of doing multiplication ?

A collection of our favourite pictorial problems, one for each day of Advent.

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

Here is a chance to play a fractions version of the classic Countdown Game.

How good are you at finding the formula for a number pattern ?

Use an Excel to investigate division. Explore the relationships between the process elements using an interactive spreadsheet.

An Excel spreadsheet with an investigation.

Use Excel to practise adding and subtracting fractions.

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Discover a handy way to describe reorderings and solve our anagram in the process.

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

A tool for generating random integers.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.