Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

To avoid losing think of another very well known game where the patterns of play are similar.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you beat the computer in the challenging strategy game?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Prove Pythagoras' Theorem using enlargements and scale factors.

Charlie likes tablecloths that use as many colours as possible, but insists that his tablecloths have some symmetry. Can you work out how many colours he needs for different tablecloth designs?

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Use Excel to explore multiplication of fractions.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Match pairs of cards so that they have equivalent ratios.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

How good are you at finding the formula for a number pattern ?

Can you explain the strategy for winning this game with any target?

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Ask a friend to choose a number between 1 and 63. By identifying which of the six cards contains the number they are thinking of it is easy to tell them what the number is.

This problem is about investigating whether it is possible to start at one vertex of a platonic solid and visit every other vertex once only returning to the vertex you started at.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

There are 27 small cubes in a 3 x 3 x 3 cube, 54 faces being visible at any one time. Is it possible to reorganise these cubes so that by dipping the large cube into a pot of paint three times you. . . .

A group of interactive resources to support work on percentages Key Stage 4.

Use Excel to investigate the effect of translations around a number grid.

Use an interactive Excel spreadsheet to explore number in this exciting game!

A simple file for the Interactive whiteboard or PC screen, demonstrating equivalent fractions.