The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

To avoid losing think of another very well known game where the patterns of play are similar.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

Help the bee to build a stack of blocks far enough to save his friend trapped in the tower.

Show that for any triangle it is always possible to construct 3 touching circles with centres at the vertices. Is it possible to construct touching circles centred at the vertices of any polygon?

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

Match pairs of cards so that they have equivalent ratios.

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

An environment that enables you to investigate tessellations of regular polygons

A right-angled isosceles triangle is rotated about the centre point of a square. What can you say about the area of the part of the square covered by the triangle as it rotates?

The opposite vertices of a square have coordinates (a,b) and (c,d). What are the coordinates of the other vertices?

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

The interactive diagram has two labelled points, A and B. It is designed to be used with the problem "Cushion Ball"

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

If you continue the pattern, can you predict what each of the following areas will be? Try to explain your prediction.

On the 3D grid a strange (and deadly) animal is lurking. Using the tracking system can you locate this creature as quickly as possible?

You can move the 4 pieces of the jigsaw and fit them into both outlines. Explain what has happened to the missing one unit of area.

Can you put the 25 coloured tiles into the 5 x 5 square so that no column, no row and no diagonal line have tiles of the same colour in them?

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you give the coordinates of the vertices of the fifth point in the patterm on this 3D grid?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Use Excel to explore multiplication of fractions.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

A counter is placed in the bottom right hand corner of a grid. You toss a coin and move the star according to the following rules: ... What is the probability that you end up in the top left-hand. . . .

This set of resources for teachers offers interactive environments to support work on loci at Key Stage 4.

Can you beat the computer in the challenging strategy game?

This resource contains interactive problems to support work on number sequences at Key Stage 4.

A collection of our favourite pictorial problems, one for each day of Advent.

Square It game for an adult and child. Can you come up with a way of always winning this game?

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

This game challenges you to locate hidden triangles in The White Box by firing rays and observing where the rays exit the Box.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

This resource contains a range of problems and interactivities on the theme of coordinates in two and three dimensions.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

This is an interactivity in which you have to sort the steps in the completion of the square into the correct order to prove the formula for the solutions of quadratic equations.

A circle rolls around the outside edge of a square so that its circumference always touches the edge of the square. Can you describe the locus of the centre of the circle?

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Place a red counter in the top left corner of a 4x4 array, which is covered by 14 other smaller counters, leaving a gap in the bottom right hand corner (HOME). What is the smallest number of moves. . . .

Can you beat Piggy in this simple dice game? Can you figure out Piggy's strategy, and is there a better one?