Can you fit the tangram pieces into the outline of the rocket?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outline of Little Ming?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of Mai Ling?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Can you work out what is wrong with the cogs on a UK 2 pound coin?

A game for 1 person. Can you work out how the dice must be rolled from the start position to the finish? Play on line.

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Exchange the positions of the two sets of counters in the least possible number of moves

What is the greatest number of squares you can make by overlapping three squares?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Seeing Squares game for an adult and child. Can you come up with a way of always winning this game?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Work out the fractions to match the cards with the same amount of money.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?