This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

Can you fit the tangram pieces into the outline of the rocket?

These interactive dominoes can be dragged around the screen.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of this plaque design?

Can you fit the tangram pieces into the outline of this sports car?

Can you fit the tangram pieces into the outline of these convex shapes?

Can you fit the tangram pieces into the outline of Little Ming and Little Fung dancing?

Can you fit the tangram pieces into the outline of these rabbits?

Can you fit the tangram pieces into the outline of the telescope and microscope?

Can you fit the tangram pieces into the outline of this goat and giraffe?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this junk?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you fit the tangram pieces into the outline of this telephone?

Can you fit the tangram pieces into the outlines of the workmen?

Can you fit the tangram pieces into the outline of Granma T?

Can you fit the tangram pieces into the outline of Little Ming playing the board game?

Can you fit the tangram pieces into the outline of this shape. How would you describe it?

Can you fit the tangram pieces into the outlines of the watering can and man in a boat?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you fit the tangram pieces into the outlines of Mai Ling and Chi Wing?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Work out the fractions to match the cards with the same amount of money.

Train game for an adult and child. Who will be the first to make the train?