Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Each light in this interactivity turns on according to a rule. What happens when you enter different numbers? Can you find the smallest number that lights up all four lights?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Here is a chance to play a version of the classic Countdown Game.

Use the interactivities to complete these Venn diagrams.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

This interactivity invites you to make conjectures and explore probabilities of outcomes related to two independent events.

The idea of this game is to add or subtract the two numbers on the dice and cover the result on the grid, trying to get a line of three. Are there some numbers that are good to aim for?

What shape is the overlap when you slide one of these shapes half way across another? Can you picture it in your head? Use the interactivity to check your visualisation.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you complete this jigsaw of the multiplication square?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

A game in which players take it in turns to choose a number. Can you block your opponent?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Explore displacement/time and velocity/time graphs with this mouse motion sensor.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its vertical and horizontal movement at each stage.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects its speed at each stage.

Experiment with the interactivity of "rolling" regular polygons, and explore how the different positions of the red dot affects the distance it travels at each stage.

An environment which simulates working with Cuisenaire rods.

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Identical discs are flipped in the air. You win if all of the faces show the same colour. Can you calculate the probability of winning with n discs?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Use the interactivity or play this dice game yourself. How could you make it fair?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Can you find triangles on a 9-point circle? Can you work out their angles?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Match the cards of the same value.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.