Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

If you have only four weights, where could you place them in order to balance this equaliser?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Try out the lottery that is played in a far-away land. What is the chance of winning?

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

An environment which simulates working with Cuisenaire rods.

Here is a chance to play a version of the classic Countdown Game.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

How many different triangles can you make on a circular pegboard that has nine pegs?

Can you find all the different ways of lining up these Cuisenaire rods?

Can you complete this jigsaw of the multiplication square?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Train game for an adult and child. Who will be the first to make the train?

Cut four triangles from a square as shown in the picture. How many different shapes can you make by fitting the four triangles back together?

Can you explain the strategy for winning this game with any target?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Watch this film carefully. Can you find a general rule for explaining when the dot will be this same distance from the horizontal axis?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Can you make the green spot travel through the tube by moving the yellow spot? Could you draw a tube that both spots would follow?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Find out what a "fault-free" rectangle is and try to make some of your own.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.