Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Here is a chance to play a version of the classic Countdown Game.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

If you have only four weights, where could you place them in order to balance this equaliser?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you explain the strategy for winning this game with any target?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

A collection of resources to support work on Factors and Multiples at Secondary level.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Train game for an adult and child. Who will be the first to make the train?

Use the interactivities to complete these Venn diagrams.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Can you complete this jigsaw of the multiplication square?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Work out the fractions to match the cards with the same amount of money.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

How many different triangles can you make on a circular pegboard that has nine pegs?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Can you find all the different triangles on these peg boards, and find their angles?