In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Can you complete this jigsaw of the multiplication square?

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Three beads are threaded on a circular wire and are coloured either red or blue. Can you find all four different combinations?

Can you work out what is wrong with the cogs on a UK 2 pound coin?

Work out the fractions to match the cards with the same amount of money.

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Use the interactivity or play this dice game yourself. How could you make it fair?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

What is the greatest number of squares you can make by overlapping three squares?

An environment which simulates working with Cuisenaire rods.

Can you fit the tangram pieces into the outlines of the candle and sundial?

Can you fit the tangram pieces into the outline of Wai Ping, Wah Ming and Chi Wing?

If you have only four weights, where could you place them in order to balance this equaliser?

Can you fit the tangram pieces into the outline of Mai Ling?

Can you fit the tangram pieces into the outline of the child walking home from school?

Can you fit the tangram pieces into the outline of Granma T?

Can you create a story that would describe the movement of the man shown on these graphs? Use the interactivity to try out our ideas.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Can you fit the tangram pieces into the outline of this telephone?

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Use the interactivity to make this Islamic star and cross design. Can you produce a tessellation of regular octagons with two different types of triangle?

Can you fit the tangram pieces into the outline of Little Fung at the table?

Can you fit the tangram pieces into the outline of this brazier for roasting chestnuts?

Can you fit the tangram pieces into the outlines of the lobster, yacht and cyclist?

Can you fit the tangram pieces into the outlines of the chairs?

Can you fit the tangram pieces into the outlines of these clocks?

Can you fit the tangram pieces into the outlines of these people?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

What shaped overlaps can you make with two circles which are the same size? What shapes are 'left over'? What shapes can you make when the circles are different sizes?

What happens when you turn these cogs? Investigate the differences between turning two cogs of different sizes and two cogs which are the same.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

How many times in twelve hours do the hands of a clock form a right angle? Use the interactivity to check your answers.

Exchange the positions of the two sets of counters in the least possible number of moves

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .