Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Use the interactivities to complete these Venn diagrams.

These interactive dominoes can be dragged around the screen.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Here is a chance to play a version of the classic Countdown Game.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Triangle numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Can you complete this jigsaw of the multiplication square?

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Can you explain the strategy for winning this game with any target?

Can you find triangles on a 9-point circle? Can you work out their angles?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?