When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Euler discussed whether or not it was possible to stroll around Koenigsberg crossing each of its seven bridges exactly once. Experiment with different numbers of islands and bridges.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

It's easy to work out the areas of most squares that we meet, but what if they were tilted?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

First Connect Three game for an adult and child. Use the dice numbers and either addition or subtraction to get three numbers in a straight line.

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Triangular numbers can be represented by a triangular array of squares. What do you notice about the sum of identical triangle numbers?

What are the areas of these triangles? What do you notice? Can you generalise to other "families" of triangles?

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Can you complete this jigsaw of the multiplication square?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Use the interactivities to complete these Venn diagrams.

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Here is a chance to play a version of the classic Countdown Game.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

Here is a solitaire type environment for you to experiment with. Which targets can you reach?

These interactive dominoes can be dragged around the screen.

Can you explain the strategy for winning this game with any target?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.