Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Can you explain the strategy for winning this game with any target?

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Can you complete this jigsaw of the multiplication square?

Here is a chance to play a version of the classic Countdown Game.

If you have only four weights, where could you place them in order to balance this equaliser?

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Find the frequency distribution for ordinary English, and use it to help you crack the code.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A collection of resources to support work on Factors and Multiples at Secondary level.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Hover your mouse over the counters to see which ones will be removed. Click to remover them. The winner is the last one to remove a counter. How you can make sure you win?

Try out the lottery that is played in a far-away land. What is the chance of winning?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

What can you say about the values of n that make $7^n + 3^n$ a multiple of 10? Are there other pairs of integers between 1 and 10 which have similar properties?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.