In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Can you complete this jigsaw of the multiplication square?

Work out how to light up the single light. What's the rule?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Here is a chance to play a version of the classic Countdown Game.

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

If you have only four weights, where could you place them in order to balance this equaliser?

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Use the interactivity to find all the different right-angled triangles you can make by just moving one corner of the starting triangle.

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Use the interactivities to complete these Venn diagrams.

Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

An environment which simulates working with Cuisenaire rods.

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

Have a go at this well-known challenge. Can you swap the frogs and toads in as few slides and jumps as possible?

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

Try out the lottery that is played in a far-away land. What is the chance of winning?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

An interactive activity for one to experiment with a tricky tessellation

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Can you make a cycle of pairs that add to make a square number using all the numbers in the box below, once and once only?

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.