Can you find a reliable strategy for choosing coordinates that will locate the robber in the minimum number of guesses?

Can you locate the lost giraffe? Input coordinates to help you search and find the giraffe in the fewest guesses.

Carry out some time trials and gather some data to help you decide on the best training regime for your rowing crew.

Imagine picking up a bow and some arrows and attempting to hit the target a few times. Can you work out the settings for the sight that give you the best chance of gaining a high score?

Six balls of various colours are randomly shaken into a trianglular arrangement. What is the probability of having at least one red in the corner?

Semi-regular tessellations combine two or more different regular polygons to fill the plane. Can you find all the semi-regular tessellations?

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

Can you make a right-angled triangle on this peg-board by joining up three points round the edge?

A tilted square is a square with no horizontal sides. Can you devise a general instruction for the construction of a square when you are given just one of its sides?

Practise your diamond mining skills and your x,y coordination in this homage to Pacman.

When number pyramids have a sequence on the bottom layer, some interesting patterns emerge...

Players take it in turns to choose a dot on the grid. The winner is the first to have four dots that can be joined to form a square.

Draw some isosceles triangles with an area of $9$cm$^2$ and a vertex at (20,20). If all the vertices must have whole number coordinates, how many is it possible to draw?

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

Meg and Mo need to hang their marbles so that they balance. Use the interactivity to experiment and find out what they need to do.

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Show how this pentagonal tile can be used to tile the plane and describe the transformations which map this pentagon to its images in the tiling.

7 balls are shaken in a container. You win if the two blue balls touch. What is the probability of winning?

Can you find a relationship between the number of dots on the circle and the number of steps that will ensure that all points are hit?

Two engines, at opposite ends of a single track railway line, set off towards one another just as a fly, sitting on the front of one of the engines, sets off flying along the railway line...

Meg and Mo still need to hang their marbles so that they balance, but this time the constraints are different. Use the interactivity to experiment and find out what they need to do.

Learn how to use the Shuffles interactivity by running through these tutorial demonstrations.

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Work out how to light up the single light. What's the rule?

How many different triangles can you make which consist of the centre point and two of the points on the edge? Can you work out each of their angles?

What is the relationship between the angle at the centre and the angles at the circumference, for angles which stand on the same arc? Can you prove it?

Mo has left, but Meg is still experimenting. Use the interactivity to help you find out how she can alter her pouch of marbles and still keep the two pouches balanced.

Interactive game. Set your own level of challenge, practise your table skills and beat your previous best score.

A game for 1 person to play on screen. Practise your number bonds whilst improving your memory

Can you spot the similarities between this game and other games you know? The aim is to choose 3 numbers that total 15.

Is this a fair game? How many ways are there of creating a fair game by adding odd and even numbers?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

A game for 2 players that can be played online. Players take it in turns to select a word from the 9 words given. The aim is to select all the occurrences of the same letter.

A red square and a blue square overlap so that the corner of the red square rests on the centre of the blue square. Show that, whatever the orientation of the red square, it covers a quarter of the. . . .

Slide the pieces to move Khun Phaen past all the guards into the position on the right from which he can escape to freedom.

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.

Start with any number of counters in any number of piles. 2 players take it in turns to remove any number of counters from a single pile. The winner is the player to take the last counter.

A game for two people, or play online. Given a target number, say 23, and a range of numbers to choose from, say 1-4, players take it in turns to add to the running total to hit their target.

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

This rectangle is cut into five pieces which fit exactly into a triangular outline and also into a square outline where the triangle, the rectangle and the square have equal areas.

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the interactivity to investigate what kinds of triangles can be drawn on peg boards with different numbers of pegs.

The aim of the game is to slide the green square from the top right hand corner to the bottom left hand corner in the least number of moves.

These formulae are often quoted, but rarely proved. In this article, we derive the formulae for the volumes of a square-based pyramid and a cone, using relatively simple mathematical concepts.

Exchange the positions of the two sets of counters in the least possible number of moves

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.