Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

If you have only four weights, where could you place them in order to balance this equaliser?

Here is a chance to play a version of the classic Countdown Game.

Start by putting one million (1 000 000) into the display of your calculator. Can you reduce this to 7 using just the 7 key and add, subtract, multiply, divide and equals as many times as you like?

Arrange the four number cards on the grid, according to the rules, to make a diagonal, vertical or horizontal line.

Mr McGregor has a magic potting shed. Overnight, the number of plants in it doubles. He'd like to put the same number of plants in each of three gardens, planting one garden each day. Can he do it?

The number of plants in Mr McGregor's magic potting shed increases overnight. He'd like to put the same number of plants in each of his gardens, planting one garden each day. How can he do it?

Investigate the smallest number of moves it takes to turn these mats upside-down if you can only turn exactly three at a time.

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Can you explain the strategy for winning this game with any target?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

We can show that (x + 1)² = x² + 2x + 1 by considering the area of an (x + 1) by (x + 1) square. Show in a similar way that (x + 2)² = x² + 4x + 4

Try entering different sets of numbers in the number pyramids. How does the total at the top change?

A collection of resources to support work on Factors and Multiples at Secondary level.

What do the numbers shaded in blue on this hundred square have in common? What do you notice about the pink numbers? How about the shaded numbers in the other squares?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

This article gives you a few ideas for understanding the Got It! game and how you might find a winning strategy.

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

This was a problem for our birthday website. Can you use four of these pieces to form a square? How about making a square with all five pieces?

This problem is based on a code using two different prime numbers less than 10. You'll need to multiply them together and shift the alphabet forwards by the result. Can you decipher the code?

Place six toy ladybirds into the box so that there are two ladybirds in every column and every row.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

Place the numbers 1 to 10 in the circles so that each number is the difference between the two numbers just below it.

This 100 square jigsaw is written in code. It starts with 1 and ends with 100. Can you build it up?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A game for 2 players. Can be played online. One player has 1 red counter, the other has 4 blue. The red counter needs to reach the other side, and the blue needs to trap the red.

How many different triangles can you make on a circular pegboard that has nine pegs?

Match pairs of cards so that they have equivalent ratios.

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

Do you know how to find the area of a triangle? You can count the squares. What happens if we turn the triangle on end? Press the button and see. Try counting the number of units in the triangle now. . . .

Given the nets of 4 cubes with the faces coloured in 4 colours, build a tower so that on each vertical wall no colour is repeated, that is all 4 colours appear.

A game to be played against the computer, or in groups. Pick a 7-digit number. A random digit is generated. What must you subract to remove the digit from your number? the first to zero wins.

There are nine teddies in Teddy Town - three red, three blue and three yellow. There are also nine houses, three of each colour. Can you put them on the map of Teddy Town according to the rules?

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

Can you find all the different triangles on these peg boards, and find their angles?

A and B are two interlocking cogwheels having p teeth and q teeth respectively. One tooth on B is painted red. Find the values of p and q for which the red tooth on B contacts every gap on the. . . .

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

Find out what a "fault-free" rectangle is and try to make some of your own.

Can you find all the different ways of lining up these Cuisenaire rods?

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?