Can you complete this jigsaw of the multiplication square?

Imagine a wheel with different markings painted on it at regular intervals. Can you predict the colour of the 18th mark? The 100th mark?

Starting with the number 180, take away 9 again and again, joining up the dots as you go. Watch out - don't join all the dots!

Use the interactivity to create some steady rhythms. How could you create a rhythm which sounds the same forwards as it does backwards?

Use the interactivities to complete these Venn diagrams.

In this activity, the computer chooses a times table and shifts it. Can you work out the table and the shift each time?

These interactive dominoes can be dragged around the screen.

Our 2008 Advent Calendar has a 'Making Maths' activity for every day in the run-up to Christmas.

Choose 13 spots on the grid. Can you work out the scoring system? What is the maximum possible score?

An interactive game for 1 person. You are given a rectangle with 50 squares on it. Roll the dice to get a percentage between 2 and 100. How many squares is this? Keep going until you get 100. . . .

A game for 2 people that can be played on line or with pens and paper. Combine your knowledege of coordinates with your skills of strategic thinking.

An interactive game to be played on your own or with friends. Imagine you are having a party. Each person takes it in turns to stand behind the chair where they will get the most chocolate.

An interactive activity for one to experiment with a tricky tessellation

A game for 2 people that everybody knows. You can play with a friend or online. If you play correctly you never lose!

NRICH December 2006 advent calendar - a new tangram for each day in the run-up to Christmas.

Work out the fractions to match the cards with the same amount of money.

What are the coordinates of the coloured dots that mark out the tangram? Try changing the position of the origin. What happens to the coordinates now?

Ahmed has some wooden planks to use for three sides of a rabbit run against the shed. What quadrilaterals would he be able to make with the planks of different lengths?

If you have only four weights, where could you place them in order to balance this equaliser?

Use the interactivities to fill in these Carroll diagrams. How do you know where to place the numbers?

Train game for an adult and child. Who will be the first to make the train?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you put the numbers from 1 to 15 on the circles so that no consecutive numbers lie anywhere along a continuous straight line?

Is it possible to place 2 counters on the 3 by 3 grid so that there is an even number of counters in every row and every column? How about if you have 3 counters or 4 counters or....?

Can you put the numbers 1 to 8 into the circles so that the four calculations are correct?

Place the numbers from 1 to 9 in the squares below so that the difference between joined squares is odd. How many different ways can you do this?

Find out how we can describe the "symmetries" of this triangle and investigate some combinations of rotating and flipping it.

Use the Cuisenaire rods environment to investigate ratio. Can you find pairs of rods in the ratio 3:2? How about 9:6?

You have 4 red and 5 blue counters. How many ways can they be placed on a 3 by 3 grid so that all the rows columns and diagonals have an even number of red counters?

Use the blue spot to help you move the yellow spot from one star to the other. How are the trails of the blue and yellow spots related?

Choose the size of your pegboard and the shapes you can make. Can you work out the strategies needed to block your opponent?

Board Block game for two. Can you stop your partner from being able to make a shape on the board?

Explore the different tunes you can make with these five gourds. What are the similarities and differences between the two tunes you are given?

Can you find all the different ways of lining up these Cuisenaire rods?

Investigate how the four L-shapes fit together to make an enlarged L-shape. You could explore this idea with other shapes too.

How can the same pieces of the tangram make this bowl before and after it was chipped? Use the interactivity to try and work out what is going on!

Use the interactivity or play this dice game yourself. How could you make it fair?

Square It game for an adult and child. Can you come up with a way of always winning this game?

Try to stop your opponent from being able to split the piles of counters into unequal numbers. Can you find a strategy?

How have the numbers been placed in this Carroll diagram? Which labels would you put on each row and column?

Can you see why 2 by 2 could be 5? Can you predict what 2 by 10 will be?

A tetromino is made up of four squares joined edge to edge. Can this tetromino, together with 15 copies of itself, be used to cover an eight by eight chessboard?

Can you fit the tangram pieces into the outline of Little Fung at the table?

A shape and space game for 2,3 or 4 players. Be the last person to be able to place a pentomino piece on the playing board. Play with card, or on the computer.

Can you fit the tangram pieces into the outline of this telephone?

A game for 1 or 2 people. Use the interactive version, or play with friends. Try to round up as many counters as possible.